
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

DEVELOPMENT OF A GRAPHICAL NUMERICAL
SIMULATION FOR THERMO ACOUSTIC RESEARCH

by

Eric W. Purdy

December 1998

Thesis Advisor: mic QuALlST m^mCTED Ihomas J. Hofler
Second Reader: Robert K. Wong

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
December 1998

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
DEVELOPMENT OF A GRAPHICAL NUMERICAL SIMULATION FOR
THERMOACOUSTIC RESEARCH

6. AUTHOR(S)
Purdy, Eric W.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of.
Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
This thesis is written to document the design and use of an object-oriented, numerical simulation of thermoacoustic

devices. The resulting expert system code entitled "Design Simulation for Thermoacoustic Research", or DSTAR, allows a
unique new approach for the rapid design and simulation of thermoacoustic devices. Past approaches to thermoacoustic
modeling have involved the use of "disposable" algorithms coded to model one specific device. Conversely, DSTAR uses a
Windows™ compliant graphical user interface to construct any given thermoacoustic model at runtime. As a result, the models
can be developed quickly and without any revision of the computer code. The approach to simulation involves the solution of a
one-dimensional acoustic wave equation concurrently with an energy flow equation from one end of the user-specified device
geometry to the other in addition to various lumped acoustical elements. The resulting steady-state solution is displayed in both
graphical and textual output. Considerable effort was given to preserving the flexibility and breadth of the possible
simulations, in addition to allowing easy modification of the source code for new thermoacoustic components. To demonstrate
the utility of the code, a thermoacoustic prime mover was modeled and then optimized for better performance.

14. SUBJECT TERMS
thermoacoustic simulation, numerical model, object-oriented

15. NUMBER OF
PAGES

 97
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFI-CATION
OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

11

Approved for public release; distribution is unlimited

DEVELOPMENT OF A GRAPHICAL NUMERICAL SIMULATION FOR
THERMO ACOUSTIC RESEARCH

Eric W. Purdy
Lieutenant, United States Navy

B.A., University of California, Davis, 1989

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN PHYSICS

from the

NAVAL POSTGRADUATE SCHOOL
December 1998

Author:

Approved by:

U1

Eric

OoV

W. Pur.

Thomas J. Hofler;Thesis Advisor

Robert K. Wong, SeconcfKeader

V^-/^c =3^
William B. Maier II, Chairman,

Department of Physics

in

IV

ABSTRACT

This thesis is written to document the design and use of an object-oriented,

numerical simulation of thermoacoustic devices. The resulting expert system code

entitled "Design Simulation for Thermoacoustic Research", or DSTAR, allows a unique

new approach for the rapid design and simulation of thermoacoustic devices. Past

approaches to thermoacoustic modeling have involved the use of "disposable" algorithms

coded to model one specific device. DSTAR uses a Windows™ compliant graphical user

interface to construct any given thermoacoustic model at runtime. As a result, the models

can be developed quickly and without any revision of the computer code. The approach

to simulation involves the solution of a one-dimensional acoustic wave equation

simultaneously with an energy flow equation from one end of the user-specified device

geometry to the other in addition to various lumped acoustical elements. The resulting

steady-state solution is displayed in both graphical and textual output. Considerable

effort was given to preserving the flexibility and breadth of the possible simulations, in

addition to allowing easy modification of the source code for new thermoacoustic

components. To demonstrate the utility of the code, a thermoacoustic prime mover was

modeled and then optimized for better performance.

v

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. THERMOACOUSTIC ENGINE MODELS l
B. OBJECTIVE 2
C. THESIS ORGANIZATION 2

D. THERMOACOUSTIC HEAT ENGINES 5

A. HEAT ENGINE EFFICIENCY AND THE CARNOT CYCLE 5
B. ACOUSTIC HEAT ENGINES 8

1. Requirements of Operation 8
2. The Acoustic Heat Engine Cycle 10
3. Heat and Work //
4. The Rott Wave and Energy Flow Equations 13

IH. NUMERICAL COMPUTATIONAL METHODS. . 15

A. FIFTH ORDER ADAPTIVE STEPSIZE RUNGE-KUTTA 15
/. Runge-Kutta Methodology 15
2. Fehlberg RK45 17

B. NEWTON-RHAPHSON METHOD FOR MULTI-DIMENSIONAL ROOT FINDING 18
C. LOWER-UPPER TRIANGULAR MATRK DECOMPOSITION 21

1. Solving Linear Systems Using LU Decomposition 21
2. The LU Decomposition Algorithm 23

IV. PROGRAM ORGANIZATION AND OPERATION . 25

A. DSTAR AND OBJECT ORIENTED PROGRAMMING 25
B. THE DSTAR OBJECT MODEL 26

1. The Core Classes 27
2. Other Classes 30
3. Class Organization : 30

C. COMPUTING AN INITIAL VALUE PROBLEM SOLUTION 32
D. COMPUTING A BOUNDARY VALUE PROBLEM SOLUTION 34

V. DSTAR GRAPHICAL USER INTERFACE...... 39

A. MAIN PROGRAM WINDOW 39
1. Menu Commands 41
2. The Toolbar 42
3. The Multi-Function Tabbed View 43

B. THE OUTPUT WINDOW 50

VI. DSTAR PRACTICAL EXAMPLE: AN ENHANCED HOFLER TUBE 55

VH. CONCLUSION 63

APPENDIX A: EXTENDING DSTAR .. 65

A. ADDING PROGRAM FUNCTIONALITY 65
B. AN EXAMPLE THERMOACOUSTIC CLASS 68
C. ADDING THE NEW CLASS TO THE USER INTERFACE 72

APPENDIX B: SYMBOLS AND EQUATIONS 75

Vll

LIST OF SYMBOLS 75
THERMOACOUSTIC EQUATIONS FOR IDEAL GASES 75
LUMPED ELEMENTS 80

LIST OF REFERENCES 83

INITIAL DISTRIBUTION LIST 85

V1U

ACKNOWLEDGEMENT

The author would first like to thank the US Navy and Naval

Postgraduate School for giving him the opportunity of a lifetime. Few other

institutions would have the courage and patience to give someone with

relatively little technical knowledge the chance to pursue graduate studies in

physics.

Secondly, I would like to thank Tom Hofler for both introducing me to

the world of thermoacoustics and allowing me great latitude in the

development of this project. His patience and amicable nature made working

with him a truly enjoyable experience.

Lastly, and most importantly, I would like to thank my wife Belinda

for putting up with the many hours I spent on the project. Without her love

and support, this project could not have happened.

IX

I. INTRODUCTION

Thermoacoustic devices come in the form of prime movers and heat

pumps. A prime mover is a heat engine in which heat-flow from a high

temperature reservoir to a low-temperature sink generates sound. In a heat

pump, or refrigerator, the opposite occurs. Here the addition of acoustic

power moves heat from a low temperature reservoir to a high temperature

sink. The cycles of these acoustic heat engines can be accomplished with few

or no moving parts. As such, these devices are inherently simple and

reliable.

A. THERMOACOUSTIC ENGINE MODELS

The history of thermoacoustics dates back to the eighteenth century

but the analysis and design of thermoacoustic heat engines is a relatively

new science. Since the establishment of the theoretical foundation for

thermoacoustics by Nikolaus Rott and his coworkers, physicists have had the

means to model the acoustic heat engine. Computer codes have been

developed to aid in the design and simulation of these devices. However,

these codes have been "disposable" (i.e. written to model one specific device)

and cumbersome to use. Disposable codes require extensive rewriting each

time a given device configuration changes. This re-coding is both time

consuming and onerous. As such, modeling of thermoacoustic heat engines

has been tedious and has detracted from the overall goal of producing

efficient, well designed devices.

B. OBJECTIVE

The goal of this thesis project is to produce a new expert system code to

model thermoacoustic devices. The code should be easy to use as well as

proving the flexibility to model many types of thermoacoustic engines without

rewriting the code. It should be designed so that incorporations of new

thermoacoustic algorithms are accomplished with relative ease. Lastly, speed

of computation should be considered in accomplishing the above goals.

By its nature, this project is very multi-disciplinary. Although the

simulation is based in physics, the implementation required aspects of .

numerical analysis as well as computer science.

C. THESIS ORGANIZATION

Chapter II begins by describing qualitatively the foundations of

thermoacoustic theory, A basic understanding of the theory will give the

reader added insight into the nature of the simulation and its operation.

Chapter III describes the primary mathematical techniques used to

solve the differential equations describing a thermoacoustic device. These

techniques involve advanced numerical integration methods, matrix algebra,

and multi-dimensional root finding algorithms.

Chapter IV details the computational methodology used to encapsulate

the numerical methods and device geometry into a coherent scheme for

thermoacoustic modeling. It is the object-oriented nature of the code,

described in this chapter, which results in a simulation that is both flexible

and easy to use.

Chapter V provides a guide for the simulation user interface. Here, the

use of the interface is described rather than the code required to create it.

Chapter VI shows a practical example of the simulation by modeling a

previously built thermoacoustic prime mover and then modifying its design to

improve efficiency.

Lastly, Chapter VII offers some conclusions about the resultant code

and some suggestions for future work.

II. THERMOACOUSTIC HEAT ENGINES

Thermoacoustic heat engines use acoustic waves in a resonant vessel

to pump heat from a lower temperature reservoir to one of higher

temperature, or conversely, use an externally imposed temperature gradient

to produce acoustic waves. Much of our analytical understanding

thermoacoustic devices stem from the work of Nikolaus Rott and his

coworkers. Rott published a series of papers beginning in 1970 which laid the

theoretical foundation for the work that continues today. Rott's theory is

based on a linearization of the Navier-Stokes, continuity, and energy

equations, with sinusoidal oscillations of all variables [Ref. l:p. 23]. A

theoretical description as well as the complete analytic treatment are

provided by Swift [Ref. 2] and Wheatley et. al. [Ref. 3 & 4] and are

paraphrased herein.

A. HEAT ENGINE EFFICIENCY AND THE CARNOT CYCLE

All heat engines can operate in one of two fundamental modes as

shown in Figure 2.1. The first mode, that of a prime mover, involves the flow

of heat from a higher temperature reservoir to one of lower temperature. In

the process of this heat-flow, some of the heat is converted to usable work.

For the alternate heat pump mode of operation, the opposite occurs. In a

heat pump, the addition of work pumps heat from a low to a high

temperature reservoir. Ideally, an engine can be functionally reversible but

practically most heat engines are designed to operate in only one mode.

The Carnot cycle represents the ideal reversible thermoacoustic heat

engine cycle. This four-step cycle, as illustrated in Figure 2.2, involves two

adiabatic steps and two isothermal steps. During the adiabatic compressions

and expansions, no heat-flow occurs and entropy remains fixed. As a result,

any work flux that occurs will cause a corresponding change in the local

temperature of the medium. Conversely, during the isothermal processes,

the temperature is fixed, and flows of entropy, work, and heat occur. For the

Carnot cycle, the change in entropy along one isotherm exactly balances that

Heat Engine Modes

Prime Mover

SS//////////////////,
Qh

Heat Pump

Y////////f//////////S

Qh

Engine w\ W Engine

'//////////////////// V//////////////////S

1st Law: Qh=W+Qc

2nd Law: &<&

W T -T
Efficiency = — < —

QH

1st Law: W+Qc=Qh

2nd Law: ^<9±.

C.O.P. sÄ<
W T -T 1h lc

Figure 2.1. Heat engines can operate in two fundamental modes. As a prime
mover, the heat engine converts some of the heat flowing from a hot
temperature to a cold temperature into work. As a heat pump, the flows of
heat and work are reversed. The first law of thermodynamics details the
fundamental relationship that exists between the heat and work. The second
law requires that the entropy created per cycle must be positive or zero. The
resultant prime mover efficiency and heat pump coefficient of performance
(C.O.P.) are therefore bounded as shown. Note, the C.O.P. for a refrigerator
is defined as Q/W. See Appendix B for variable definitions. [Ref. 3:p. 4]

6

along the other, hence there is no net change in entropy over the entire cycle.

This ideal process, carried out in near equilibrium conditions, demonstrates

the upper bound on heat engine efficiency that is imposed by the first and

second laws of thermodynamics. [Ref. 3:p. 2-4]

Carnot Cycle

Prime Mover

Tc

Heat Pump

ä Th
*■>

(0
I.
<D
Q

£ r

Isotherm Isotherm

A

Adiabat

-^

4

Adiabat

■ -p"

Entropy Entropy

C
Expansion

Qh
f ^ Compression

o \T^^^> Work \^^/— Work
3
CO
CO
©

0.

Compression ^----^

N
(

Q=0

l

Q-°\ A
Expansion ^*-~---^.^

G

0=0

Volume Volume

Figure 2.2. The Carnot cycle and associated temperature-entropy and
pressure-volume diagrams. This near-equilibrium cycle represents the most
efficient manner in which a heat engine may operate. The area enclosed by
each of the pressure-volume diagrams equals the net work done by or on the
engine in the complete cycle. [Ref. 3:p. 6]

In practice, heat engines do not operate in near-equilibrium cycles.

Instead, inherent irreversibilities due to temperature and pressure gradients

generate entropy and as a result, decrease efficiency. Furthermore, a cycle

that operates at maximum efficiency (i.e. near equilibrium) will have, in

general, very low power output. [Ref. 3: pp. 2-4]

B. ACOUSTIC HEAT ENGINES

1. Requirements of Operation

Some irreversible processes that decrease heat engine efficiency are, by

nature, central to an acoustic heat engine's operation. An acoustic heat

engine is one in which the reciprocating cycles are accomplished without the

use of moving parts, but instead by acoustic oscillations. These engines

require the irreversibility of heat conduction across a. temperature gradient to

provide the necessary phasing of the thermodynamic cycles. As such,

acoustic heat engines are intrinsically irreversible thermodynamically, but,

as we will see, functionally reversible. Figure 2.3 shows the basic structure

for the two types of acoustic heat engines.

The requisite phasing of an acoustic heat engine is accomplished by the

introduction of a second thermodynamic medium into the heat engine's cycle.

The presence of a second medium alters thermodynamic phase relationships

that exist within the oscillating working fluid alone. This second medium

usually takes the form of a set of thinly spaced plates known as the stack.

This stack will have, in general, a thermal gradient along the direction of

acoustic oscillations. As acoustic oscillations occur in the engine, gas parcels

move back and forth across the surface area provided by the plates. Since the

pressure oscillations of the parcel are nearly adiabatic, compressions and

8

expansions will induce accompanying changes in temperature. In addition to

the temperature changes brought about by the acoustic oscillations, a gas

parcel will also experience changes in temperature due to heat-flow from (or

to) the stack material and the thermal gradient that is imposed therein.

Basic Acoustic Heat Engine Structure

Ch

Q„

nUIIIHIIIHlIIIIHI
,! i

Work

Heat Exchanger

Stack

Heat Exchanger

Acoustic
Resonator

Prime Mover

Work!

I

Driver

Heat Exchanger

Stack

Heat Exchanger

Acoustic
Resonator

Heat Pump

Figure 2.3. The basic structure of the two types of acoustic heat engines. The
prime mover uses the externally applied temperature gradient to create
acoustic waves. The heat pump absorbs work from an acoustic wave and
pumps heat from a lower to a higher temperature. The interaction of two
different thermodynamic media in the stack produces the resultant
thermoacoustic effects.

If a gas parcel is sufficiently distant from the stack plates, this process of

heat-flow is not instantaneous, however. Instead there is a lag between the

motion of the gas parcel and the temperature change that occurs. This

latency in the temperature change is a consequence of the distance of the

parcel from the stack and its relatively poor thermal contact with it. The

resultant time lag introduces the necessary phasing required to articulate the

acoustic heat engine cycle.

2. The Acoustic Heat Engine Cycle

To describe the physical processes that occur in an acoustic heat engine

cycle, we follow in detail a gas parcel as it completes an oscillation in the

presence of a stack plate. This simple model serves to illustrate the

underlying theory.

Not all parts of the oscillating gas contribute equally to the

thermoacoustic effect. Only the parcels of gas that are at the appropriate

lateral distance from the stack material play an important role. The thermal

penetration depth, 8K, is approximately the distance that heat can diffuse

through the gas during the time l/oo, where co is 2TC times the acoustic

frequency. The parcels of gas that are approximately 8K away from the stack

plates will have sufficient phasing of the movement and thermodynamics to

articulate the necessary cycle. For parcels closer than one thermal

penetration depth from the plate, the temperature of the gas closely mirrors

that of the plate. Conversely, parcels much farther than 5K have insufficient

time during the acoustic oscillation to absorb heat from the stack.

Furthermore, at one thermal penetration depth, the thermal expansion and

contraction will be in the right phase with respect to the oscillating pressure

to do (or absorb) net work. Thus, both the heat-flow and the work-flow will

be a maximum around this distance. It is therefore these parcels of gas that

are the primary carriers of heat and work in an acoustic heat engine.

The stack temperature gradient and its relative magnitude with

respect to the adiabatic temperature changes of the oscillating gas parcels

provide a key mechanism for completion the acoustic heat engine cycle. As

10

the gas parcel oscillates back and forth across a stack plate, it will be warmed

and cooled as a result of the acoustic pressure oscillations. Additionally, as

the parcel moves along the plate, the parcel sees differing plate temperatures.

If the resulting temperature of the gas parcel is higher than the local

temperature of the plate, heat will flow from the gas to the plate. Conversely,

if the gas is cooler, heat will flow from the plate to the gas.

The critical temperature gradient is one for which the adiabatic

temperature change in the gas parcel just equals the stack temperature

change through which the parcel has just moved. At this gradient, there will

be no net heat or work flow. Additionally, the sign of the work-flow is also

dependent on the critical temperature gradient. For the prime mover mode,

the local pressure is higher as heat-flows from the parcel to the plate than it

is when heat-flows from the plate to the parcel. As a result, net work is

added to the acoustic oscillation. In the heat pump, the opposite occurs and

work is absorbed from the acoustic wave. Consequently, the critical

temperature gradient marks the boundary between the heat pump and prime

mover modes of operation. By controlling the stack temperature gradient, we

can reverse the operation of the acoustic heat engine from that of a prime

mover to that of a heat pump. Thus, although the processes of the acoustic

heat engine are irreversible, the heat engine is functionally reversible.

Figure 2.4 shows the acoustic heat engine cycle for a prime mover. The cycle

for a heat pump is the exact reverse.

3. Heat and Work

In general, the length of the stack is greater than the displacement of

any given gas parcel during an oscillation. Consequently, there exists an

entire train of adjacent gas parcels, each constrained in short longitudinal

oscillations, extending the length of the stack.

11

ACOUSTIC HEAT ENGINE CYCLE (HOFLER TUBE - PRIME MOVER)

^Heat source

Cold heat
,, Qh ^exchanger

Hot he^r
exchanger

Heat sirik"

Pressure

Qs

A—Jh.
-Hotter
-Higher pressure

-Colder
-Lower pressure

Displacement

Temperature

AbsorbingX .. Moving right as sound wave
£ heat ^v >^ expands it
3
0)
(0
£ x\

Moving left as sound wave^^. \
compresses it ^^~»J Rejecting

heat

Location in resonator
tube

2
3

s
a.
E

Volume of Gas Parcel

—Stack temperature gradient

Critical
temperature

gradient

Parcel
.temperature

S^l

Position

Figure 2.4. The acoustic heat engine cycle for a prime mover. As the gas
parcel oscillates in the presence of the stack plates, both the adiabatic
temperature change as well as local stack temperature play an important
role. When the temperature of the adjacent plate is higher than the parcel
temperature, heat will flow from the plate to the parcel. At the other end of
the cycle, heat will flow from the parcel to the plate. Since the pressure
during the heat-flow expansion step is higher than the pressure during the
heat-flow compression step, net work is performed on the acoustic wave. For
the heat pump mode of operation, all flows of heat and work are reversed and
work is absorbed from the acoustic oscillation. [Ref. l:p. 23]

12

Only parcels of gas on the end of the plate contribute to the net heat-

flow. As the gas parcels oscillate, each absorbs heat at one end of its

displacement and rejects it at the other. However, since the location of

absorption for one parcel coincides with that of rejection for an adjacent

parcel, no net heat-flow exists in the interior of the stack. Only at the stack

ends, where the thermodynamic symmetry is broken, can heat-flow occur.

For a prime mover, parcels oscillating beyond the cold end of the stack have

nowhere to deposit the heat acquired during adiabatic warming. Instead,

these parcels complete their round-trip oscillation and return to thermal

contact with the end of the stack. Since the heat deposited by the adjacent

parcel (still in thermal contact with the stack) will remain uncompensated,

the cold end of the stack will begin to heat up. Consequently, a heat

exchanger is used to remove the heat deposited and maintain the desired

temperature gradient. Similarly, if the hot end of the stack is not supplied

with a source of heat, the driving temperature gradient will also begin to .

fade. So long as the length of the stack does not exceed one quarter of the

acoustic wavelength (The zero heat-flow at pressure and velocity nodes would

otherwise alter its performance), the heat-flow remains independent of the

stack length.

Since each gas parcel in the "bucket brigade" does (or absorbs) net

work, the entire chain contributes to the overall work-flow. As a result, the

total work done on (or by) a gas is roughly proportional to the length of the

stack.

4. The Rott Wave and Energy Flow Equations

Though the previous sections were designed to give the reader a basic

understanding of the theory behind thermoacoustic engine operation, a

quantitative analysis would have included a lengthy derivation of the wave

13

and energy flow equations of Nikolaus Rott and modified by G. W. Swift. It is

these equations that provide the foundation upon which numerical models of

thermoacoustic devices are built. As such a derivation is beyond the scope of

this thesis, the equations are presented in Appendix B without further

explanation. A complete treatment is available in Ref. 2.

In addition to the Rott/Swift equations, a set of normalizations are

defined and a set of non-dimensional thermoacoustic equations are also listed

in Appendix B. It is these non-dimensional equations that are implemented

in DSTAR and enable the use of normalized parameters.

When designing a new engine device, normalized parameters are more

fundamental quantities and are relatively independent of the scale of the

device. With experience, the designer discovers that fairly narrow ranges of

values for the normalized parameters lead to optimal performance over a

wide range of devices. Also, the operating frequency or a specified tube

length can be allow to vary under the control of the boundary value solver, as

a means of meeting the resonance condition. Under these design conditions,

the device model is a rather "plastic" entity whose shape or geometry may

vary from one iteration of the model to the next.

When modeling existing experimental devices, parameters can be

expressed in standard mks or cgs units in order to simulated the experiment

in concrete terms. As such, the "Design" and "Simulation" tasks are

significantly different and both can be performed efficiently with DSTAR.

14

III. NUMERICAL COMPUTATIONAL METHODS

A. FIFTH ORDER ADAPTIVE STEPSIZE RUNGE-KUTTA

In simulating a thermoacoustic device, it is necessary to solve systems

of first order ordinary differential equations. For some components, the

analytic solutions can be easily obtained. However, for the bulk of the devices

of interest, a numerical solution is required. To this end a Runge-Kutta

method was used to solve the basic initial value problems. The Runge-Kutta

algorithms used in DSTAR are derived from the code available from the

University of British Columbia [Ref. 5]. These algorithms provided a useful

foundation on which to develop the computational approach used in the code.

1. Runge-Kutta Methodology

There is a wide range of numerical methods available to solve ordinary

differential equations. The simplest, and perhaps most well known method,

is the forward Euler method. The forward Euler method takes the solution

value, yn, at position xn and advances it to position xn+1 using the value of the

derivative f(y^ xj at xn,

yn+i = yn+
hf(yn,x„) , (3.1)

where h = Ax. This method approximates a straight-line solution between the

two points. While this method is fast, it is also inherently inaccurate. [Ref. 5]

In contrast to first order schemes such as the forward Euler method,

Runge-Kutta methods are higher order, one-step schemes that make use of

information at different stages between the beginning and end of a step. They

are generally more stable and accurate than the forward Euler method but

15

are still relatively simple [Ref. 5]. For example, in a second order Runge-

Kutta scheme, the derivative at the starting point is used to approximate the

derivative at the midpoint of the interval. This midpoint derivative is then

used to calculate the solution at the end of the interval. The midpoint

method, or 2-stage Runge-Kutta, is written as follows [Ref. 5]:

K=hf(y„,xn)

k2=¥(yn+-kl,xn+-h) (3.2)

yn+i =yn+k2-

In this case, k2 and k2 are intermediary values calculated in producing the

final solution yn+1. Higher order schemes will involve more intermediary

terms but follow the same basic principle. A general s-stage Runge-Kutta

method is written as,

n

K =¥(yn + ^bukJyath), i = l,...,s

n

yn+i = yn+Y.cJkJ

(3.3)

j=i

The Runge-Kutta formula coefficients, ai7 btj, and c, are expressed in a tabular

form known as the Runge-Kutta tableau as shown in Table 1.

16

i at b, Ci

1 a, bn b12 .. ■ bls Ci

2 a2 b21 b22 ■• • b2s c2

; : : : ■ \

s as bsl bs2 - • bss cs

j = 1 2 .. s

Table 3.1. The Runge-Kutta tableau.

2. Fehlberg RK45

Among the higher order Runge-Kutta methods, the Fehlberg RK45

provides a good compromise between speed of computation and accuracy of

results. Additionally, this fifth order routine provides the added benefit of

error estimation by the use of an embedded fourth order scheme. Both the

fifth order and the embedded fourth order scheme use the same intermediary

stages, krk6, but compute the final step using different coefficients, ct and c*.

yn+i = Vn + cA + c2k2 + c3k3 + c4k4 + c5k5 + c6k6 5th order

yn+i = yn+ elk.+ c*2k2 + czkz + c*4k4 + chk5 + c*6k6 4
th order

(3.4)

(3.5)

The difference of these two results can be taken as an error estimate

for the fourth order method. Since higher order methods are, in general,

more accurate than lower order methods, the fourth order error can, in turn,

be used as an estimate of the error for the fifth order method. This error

estimate can now be used to adjust the stepsize, h, such that the integration

is completed within the user-specified tolerances. This adaptive stepsize

methodology enables the integration speed to be commensurate with the

17

nature of the differential equations being solved. For slowly varying

functions, the adaptive stepsize routine will require very few intermediate

points to compute the integration. For rapidly changing functions, the

stepsize need only be reduced as small as is necessary to produce the desired

accuracy.

The coefficients for the embedded Runge-Kutta scheme used in DSTAR

are shown in Table 2 [Ref. 5].

i at *v Ci Ci

1 37/378 2825/27648

2 1/5 1/5 0 0

3 3/10 3/40 9/40 250/621 18575/48384

4 3/5 3/10 -9/10' 6/5 125/594 13525/55296

5 1 -11/54 5/2 -70/27 35/27 0 277/14336

6 7/8 1631/55296 175/512 575/13824 44275/110592 253/4096 512/1771 1/4

j = 1 2 3 4 5 6

Table 3.2. Cash-Karp embedded Runge-Kutta tableau

B. NEWTON-RHAPHSON METHOD FOR MULTI-DIMENSIONAL
ROOT FINDING

Rarely in solving the ordinary differential equations that describe a

thermoacoustic device are all of the initial conditions completely known.

Instead, one or more of the initial conditions is guessed, a solution is

evaluated, and then boundary conditions are compared to the solution. If

there is a match, the solution is correct. If not, the guess must be altered and

a new solution computed. This process is repeated until the solution and

boundary values converge. Consider the difference between a given target

boundary condition and the corresponding calculated solution as a function in

18

and of itself. Then the problem reduces to finding the root, or zero, of this

function. To this end, a Newton-Rhaphson method for root finding is

employed by DSTAR.

The Newton-Rhaphson method involves evaluation of the function and

its derivative at the guessed root position. The derivative is used to construct

a geometric tangent to the function at this position. The tangent line

intercept is then chosen as the next guess for the root. This process is

iterated until the root is found. Algebraically, this process is equivalent to

expanding the function in a first order Taylor series to make the linear

approximation,

f(x + ö)~f(x) + f'(x)ö , (3.6)

to determine the next point to try, x+8:

f(x + S) = 0-^S = -^p-. (3.7)
fix)

If the iteration brings the function close to a local maximum or minimum,

8 may become very large and the method may fail. Aside from these possible

failures, the rate of convergence on the root is very large. [Ref. 6:p. 362]

Figure 3.1 gives a graphic illustration of the Newton-Rhaphson method

of root finding [Ref. 6:p. 363].

19

Figure 3.1. Graphical depiction of the Newton-Rhaphson
method for finding the root of a function.

The Newton-Rhaphson method can easily be extended for multi-

dimensional root finding. The general problem computed in the DSTAR

model consists of an equal number of guessed initial conditions and targeted

boundary conditions. If there are N such guesses and targets, then the

problem gives N functions to be zeroed involving variables xir i=l,2,...,N,

Fi(x1,x2,...,xN) = 0 i=l,2,...,N , (3.8)

where x is now the entire vector of variables and F is the entire vector of

functions to be zeroed. The Newton-Rhaphson method is now extended to N

dimensions as [Ref. 6:p. 381],

F,.(x + <fc) = F,(x) + £|^<St.+...
j=\ OXj

(3.9)

20

Noting that the matrix of partial derivatives in equation (3.9) is the Jacobian

matrix J, the equation can be rewritten in matrix notation as [Ref. 6:p. 381]:

F(x + <5x) = F(x)+J-<5x + higher order terms. (3.10)

Again the left-hand side is equated to zero and the following equation results

[Ref. 6:p. 381]:

J<5x = -F. (3.11)

This matrix equation can now be solved for the guess corrections, 8x, using

the matrix decomposition method described in the next section. This

correction vector is added to the guess vector x, and the process is repeated

until the boundary conditions are satisfied. The computational algorithm

used in the DSTAR model is a modified version of the MNEWT algorithm

provided in [Ref. 6].

C. LOWER-UPPER TRIANGULAR MATRIX DECOMPOSITION

1. Solving Linear Systems Using LU Decomposition

To solve the matrix equation (3.11), the DSTAR code makes use of a

Gaussian ehmination scheme known as LU decomposition. Given the linear

system Ax = b, the matrix A can be decomposed into two triangular matrices,

L and U,

A = LU, (3.12)

21

where L is lower triangular and U is upper triangular. Once the matrix has

been decomposed, the solution to the linear system can be easily solved in the

following manner:

Ax = b L(Ux)=b LetUx = y (3.13)

Now solve for the vector y in the resulting equation,

Ly = b (3.14)

The procedure is straightforward since a triangular matrix system may

be easily solved by forward or backward substitution. In this case, the

corresponding system of linear equations is,

Luy{ =bi yi = r

L2ly, +L22y2 =b2 -> y2=^hllll

Ll\y\ +L32yi + L33 ^3 =h :

Once y is a known, it is possible to solve for x in,

(3.15)

Ux = y , (3.16)

in the same manner. [Ref. 7]

22

2. The LU Decomposition Algorithm

The LU decomposition is accomplished through the use of Crout's

algorithm [Ref. 6]. This algorithm takes the input matrix A and performs an

overwrite of the ith row elements according the formula [Ref. 7],
j-i

k=l
(3.17)

k=\

which results in a combined matrix containing both the upper and lower

triangular forms. Since a given LU decomposition is not unique, the

algorithm is initiated by choosing the diagonal elements of the L matrix to be

1. This choice of diagonal elements precludes the need to store them and

allows the combined matrix" form. For a 4x4 matrix the result would be,

Un Un Ua u»
L2I U22 UB u24

**. L32 ^33 uM

L4i L42 ^43 uM

(3.18)

This result can then be used as shown previously to. solve the matrix

equation (3.11).

23

24

IV. PROGRAM ORGANIZATION AND OPERATION

A. DSTAR AND OBJECT ORIENTED PROGRAMMING

At its most fundamental level, any computer simulation is merely an

algorithmic representation of the physical objects it describes. With the

advent of object oriented programming, these algorithms have become both

easier to construct and to maintain as faithful representations of real-world

objects. It is with these advantages in mind that DSTAR was written in C++,

the fully object oriented version of the C programming language.

Before proceeding further with the description of the DSTAR

computational approach, it will become advantageous to briefly define some

of the more important aspects of C++ object oriented programming:

Object — An essentially reusable software component that models items

in the real world [Ref. 8:p. 10].

Classes - The programmatic description of an object (i.e. the code).

This includes both the data members (variables) as well as the methods

(functions) that manipulate the data.

Inheritance — A form of software reusability in which new classes are

created from existing classes by absorbing their attributes and behaviors and

embellishing these with the capabilities the new classes require [Ref. 8:p.

520]. A class that inherits from another class is said to be a derived class.

The class from which another class is derived is said to be the base class.

Virtual Functions — A method in a derived class that can be accessed

through a pointer to its base class [Ref. 8:p. 565].

Polymorphism - The ability for objects of different classes related by

inheritance to respond differently to the same member function call [Ref. 8:

p.566].

25

Abstract Base Class - A base class that is never instantiated and

merely serves as a template from which derived classes will be defined.

Operator Overloading - Allows the objects to respond to commonly

used operators (e.g. + or -).

The ANSI Standard Library provided with most modern C++ compilers

uses operator overloading and polymorphism to provide complex number

support comparable to that of Fortran 77. This is useful for thermoacoustic

calculations where sinusoidal time dependence is assumed in the form of an

eiut factor.

Similarly, overloading can be used to extend the math capabilities for

vector and linear algebra systems. The class library MV++ [Ref. 9] is used in

DSTAR to provide "loopless" vector operations comparable to that of Fortran

90.

The DSTAR program makes use of all of these advanced features of the

C++ language resulting in code that is both easy to maintain and to extend

for greater future capability.

B. THE DSTAR OBJECT MODEL

The structure of the DSTAR object model provides the central

mechanism by which solutions to the one-dimensional wave equations for a

given device geometry are solved. Through careful design and interaction of

the objects, the model was created such that the precise definition of a

particular device is not known at compile time. Instead, the user dynamically

creates the design of a thermoacoustic engine at run time using the graphical

interface. This is perhaps the key advantage of DSTAR over previous codes.

Such dynamic construction of a particular simulation allows rapid

26

prototyping of thermoacoustic devices without having to rewrite the

simulation code.

1. The Core Classes

To facilitate the run time definition of a thermoacoustic device, several

key classes were developed which model the actual real world components.

These core classes represent the thermoacoustic engine as a whole, its

constituent components, and the physical attributes that define these

components.

a) CTAEngine Class

The highest level object that is modeled is the thermoacoustic

engine itself. This object, which is encapsulated in the class CTAEngine,

provides the variables and methods that are common to the thermoacoustic

device as a whole. This includes such things as the physical constants for the

enclosed gas as well as the design frequency of the acoustic oscillations.

Additionally, the CTAEngine class provides all the methods required to

compute a continuous solution to the differential equations from one end of

the device to the other. When boundary, conditions are present, the

CTAEngine iterates the solutions to the model until these conditions are

satisfied. These boundary value problem solutions are calculated through use

of the Newton-Rhaphson algorithm described in chapter 3.

b) CTAModule Class

Figure 4.1 shows an example of a thermoacoustic device, the

Hofler Tube [Ref. 4], which has been subdivided into individual components.

27

These components or modules provide the next level of programmatic

abstraction in the DSTAR model. Classes that are derived from the abstract

base class, CTAModule, represent each component of the thermoacoustic

engine. This base class provides the variables and methods common among

all the thermoacoustic components. The Runge-Kutta integrator, previously

described, is among the methods incorporated in this class. Since the

CTAModule class is abstract, no objects of this class are ever instantiated.

Instead, each particular component class is derived from CTAModule and

thereby inherits its capabilities. This allows each component to be

fundamentally different with respect to its geometry and computational

methodology (i.e. the differential equations) and yet still conform to a

common interface. CTAModule derived classes include models of tubes,

stacks, heat exchangers and lumped elements as shown in Figure 4.2.

The CTAModule class contains several virtual functions. The

propagate () method holds all the code that is required to compute the

solution to the wave equation from one end of the component to the other.

Ordinarily this would consist of a simple Runge-Kutta integration to find the

solution. However, some components may have analytic solutions while

others may require special mathematical treatment. Hence, the method

propagate () is ordinarily overridden in the derived classes to provide the

unique computational code required for that specific component.

The second virtual function in the CTAModule class is the

derivative () method. As its name suggests, this method contains the code

that provides numerical derivatives for the appropriate differential equations.

These derivatives are required for the Runge-Kutta integration algorithm

shown in equation (3.3). As such, the derivative () method must be

uniquely implemented in all CTAModule derived classes.

28

Stack Tube

Radiation
Impedance

■ill Cold ffcat Hot Heat End Cap
Exchanger Exchanger

Figure 4.1. The Hofler Tube and its constituent components.

CTAModule

1 1 1 1
CTubes:
Straight

Linear Taper
Radius Taper

CStacks CHeatExchangers

CLumpedElements:
End Cap

Rigid Termination
Small Volume

Capillary
Rigid Termination &

Capillary
Small Volume &

Capillary
Radiation

Impeadance

CinitState

Figure 4.2. CTAModule class and its derived class hierarchy.

29

c) CTAElement Class

The CTAElement class provides the final basic building block of

the DSTAR object model. Objects of this class are essentially variables that

represent the physical structure of any given component (e.g. radius, length,

etc.). In addition to providing the double precision value ofthat variable, the

CTAElement object contains other vital information. This includes items

such as the string name displayed by the user interface as well as Boolean

values that flag different computational modes of the model. The objects of

the CTAElement class are grouped in container classes within the

CTAEngine and CTAModule classes. These container classes provide a

convenient way for the user interface to display a given component's

geometric properties without having to know a priori what they are.

2. Other Classes

The CTAEngine, CTAModule, and CTAElement classes provide the

central building blocks of the DSTAR model but only comprise a few of the

many classes in the code. Additionally there are classes which control the

user interface, commercial classes purchased to enhance the program, and

classes designed to provide additional mathematical ability (e.g. MV++).

Figure 4.3 gives a summary of classes in the DSTAR object model.

3. Class Organization

While the core classes provide the framework upon which the DSTAR

object model is built, it is the organization and interaction of these classes

that provides the power and flexibility of the simulation. Again, the

CTAEngine class lies at the heart of the simulation. There will only be one

object of this class in any given model. It is, in a sense, the glue that holds

30

Thermoacoustic Classes: CMyEdit
CTAEngine CMyPropertySheet
CTAElement COptionsDialog
CTAModule CuserDefinedVariablePage
CTubes
CHeatExchangers Utility Classes:
CStacks CToken
CInitState CUnitConvertor
CLumpedElements CUserDefinedVariables

User Interface Classes: Mathematical Classes:
CAboutDlg MV++ Classes:
CAssemblePage mvblas
CComponentPage mvmtp
CEngConfigGrid mwind
CFormDialogApp mwrf
CFormDialogDoc mwtp
CFormDialogView
CGlobalPage Commercial Software Classes:
CGraphDialog Ultimate Grid Classes
CGTSummary Pro Essentials Classes
CMainFrame

Figure 4.3. The classes of the DSTAR object model.

the model together. Within the CTAEngine object there are two data

structures that comprise the totality of any given device geometry. The first

structure is a collection of CTAElement objects that comprise the properties

of the engine as a whole. This array is housed in a Microsoft Foundation

Classes (MFC) container class called CObArray. The second structure is an

ordered array of CTAModule objects that represents the particular

thermoacoustic components of the given device. This array is also contained

in a CObArray. The key advantage of this approach lies in the ease with

which a given geometry can be altered by merely changing the makeup of

31

this array. New components can be inserted, moved and deleted with relative

ease. In the past, changing a given simulation to reflect device geometry

change would have required a rewrite of the code.

Within the CTAModule class objects there are three data structures

which effectively describe the geometry and current physical state of the

given component. The CObArrays entitled m_GeometryElements,

m_InputStateElements, and m_DerivedElements contain all this data as

arrays of CTAElement objects. As its name suggests, m_GeometryElements

contains all the variables that describe the thermoacoustic component's

geometry. The current states of the temperature, complex pressure, and

complex volume velocity are stored in m_InputStateElements. The final

array, m_DerivedElements, contains values derived from the local state

elements such as acoustic impedance.

Figure 4.4 shows a Hofler Tube and the DSTAR class structure used to

represent it.

C. COMPUTING AN INITIAL VALUE PROBLEM SOLUTION

Solving the system of first order differential equations in a continuous

manner from one end of the thermoacoustic engine to the other is the central

computational task of DSTAR. For each component, a steady state solution

to the one-dimensional wave equation, described in Chapter II, must be

calculated. These component solutions are pieced together to make a

continuous solution for the entire device. The CTAEngine class method

entitled solve () accomplishes this task.

The mechanism of the solve () method is made possible through the

use of the virtual polymorphic function propagate () in each CTAModule

derived class object. The solution is computed by iterating through the array

32

CTAEngine

m TAModules

t D,

•D ~°
Q.
E
3

Ü

n> CO

E~
- m
n
<D _
Q.=
E
a e

m_GeometryElements mJnputStateElements m DerivedEfements

radius kxPosition work
temperature acoustic imp.(Re)
pressure(Re) acoustic imp.(lm)
pressure(lm)
volume velocity(Re)
volume velocity(lm)

m_GeometryElements mJnputStateElements m DerivedElements

m_GeometryBements

radius
plate separation
plate thickness

m_GeometryElements mJnputStateElements m_Derived Elements

radius kxPosition work
temperature acoustic imp.(Re)
pressure(Re) acoustic imp.(lm)
pressure(lm)
volume velocity(Re)
volume velocity(lm)

mJSeometryElements mJnputStateElements m_DerivedElements

radius kxPosition work
plate separation temperature acoustic imp.(Re)
plate thickness pressure(Re)

pressure(lm)
volume velocity(Re)
volume velocity(lm)

acoustic imp.(lm)

radius
plate separation
plate thickness
enthalpy flow .
rho
Ksl, Csl, BetaK, BetaC

kxPosition
temperature
pressure(Re)
pressure(lm)
volume velocity(Re)
volume velocity(lm)

work
acoustic imp.(Re)
acoustic imp.(lm)
heat flow

mJnputStateElements mJDerived Elements

kxPosition work
temperature acoustic imp.(Re)
pressure(Re) acoustic imp.(lm)
pressure(lm)
volume velocity(Re)
volume velocity(lm)

m_GeometryElements mJnputStateElements m_DerivedElements

radius kxPosition work
temperature acoustic imp.(Re)
pressure(Re) acoustic imp.(lm)
pressure(lm)
volume velocity(Re)
volume velocity(lm)

mJ3eometryElements mJnputStateElements m_Derived Elements

radius kxPosition work
temperature acoustic imp.(Re)
pressure(Re) acoustic imp.(lm)
pressure(lm)
volume velocity(Re)
volume velocity(lm)

Figure 4.4. The Hofler Tube and the classes used to model it.

33

of CTAModule class derived objects and calling the propagate () function for

each object. The values of the local state variables (temperature, complex

pressure, and complex volume velocity) are passed in as initial conditions to

the function. During the integration through the particular component, the

intermediate values for the local state variables are recorded for later use.

After the integration of a component is complete, the final local state

quantities are retrieved and then passed on to the next component as its

initial conditions. Since each propagate () function is unique to the type of

component it models, the solution that results is that of a one-dimensional

wave propagating from one end of the device to the other, in addition to

temperature distribution and heat and enthalpy flow in the stack. Figure 4.5

displays a block diagram example of the solve () function for a three tube

device and the DSTAR plot that resulted.

D. COMPUTING A BOUNDARY VALUE PROBLEM SOLUTION

Solving an initial value problem, although illustrative of the flexibility

of the DSTAR code, is only the first step in calculating the wave equations for

a given device. To find a true physical solution, boundary conditions must be

applied. To accomplish this task, the Newton-Rhaphson method coupled with

the LU decomposition are used.

Recalling the Newton-Rhaphson method described in chapter 3, the

initial step of the algorithm required the generation of a vector of guessed

initial conditions, x, as in equation (3.11). The CTAEngine class method

constructvectors () realizes this process. This method iterates through

the array of component objects and searches for variables that have been

tagged by the user as guesses. When such a variable is encountered, a

34

Pressure (Re) Volume Velocity (Im) Radius

110 15 2p
kx Position (radians)

25

*s_ _^_

30

CTAEngine::solve()

Initial _
Condition

CTubes::propagate()

Straight Tube
Algorithm

Local
'State"

CTubes::propagate()

Constant Taper Tube
Algorithm

Local
' State'

CTubes::propagate()

Straight Tube
Algorithm

Figure 4.5. The bottom of the figure shows a block diagram of the solve()
function in operation. After an initial condition is inserted, each component's
propagateO function is called and the acoustic wave is transmitted from one
end of the device to the other. For this example case there are three tube
sections of different radii. This plot, exported from DSTAR, shows the effect
of the increasing radius on the local state quantities, pressure (Re) and
volume velocity (Im). See Appendix B for normalized variables and
parameters.

35

pointer to that variable is appended to the guess vector. Additionally, the

method collects pointers to all output variables that are tagged as targets as

well as pointers to the actual target values. The difference of the target

values and the corresponding calculated solution value is the function vector,

F, as in equation (3.11).

To complete the solution, the mnewt () method is called. This method

uses the previously described solve () method to compute the first solution.

If the function vector, F, is sufficiently small in magnitude, then the

boundary value problem is complete. More likely, at least one iteration of the

Newton-Rhaphson algorithm will be required. In this case, the Jacobian

matrix is calculated using finite difference partial derivatives. With J and F

calculated, the LU decomposition and backward substitution are performed to

solve (3.11) for the guess vector change, 8x. These changes are applied to the

guesses and the process repeats until the solution converges or the process

fails. Figure 4.6 shows a flow chart representation of this procedure. Figure

4.7 details an example of a computed boundary value problem from DSTAE.

36

yes

CTAEngine::constructVectors()

'

CTAEngine::mnewt()

i '

CTAEngine::solve()

1

<L lFl- tolf ^>
solution

complete

yes

no

calculate finite difference
Jacobian

i r

CTAEngine::luDecomp()
CTAEngine::luSolve()

J <5x = -F

<CL N - fo/x J^>- solution
complete

yes

i

no
r

„-^max numt
^~"\^ exce

ser of tries~-> solution failed

i

no
r

x = x + <5x

Figure 4.6. The flow chart shows the mechanism for calculating boundary
value problems. The values tolf, and tolx are user specified tolerances for
exiting the Newton-Rhaphson routine.

37

Pressure (Re)

Volume Velocity (Im)

Pressure (Im)

Temperature

Volume Velocity (Re)

mmm wmmmmmmmiitimmmmmmfflmmm

0.00 1025 0.50 0.75 1.00 125 1.50
kx Position (radians)

Stack

Tube Sections Acoustic Driver

Early Thermoacoustic Demonstration Refrigerator

Figure 4.7. A simple model of an early thermoacoustic demonstration
refrigerator shows the application of the boundary value problem solver in
DSTAR. The initial temperature, a pressure anti-node, and volume velocity
node were specified at the left end of the device. The enthalpy flow of the
stack was guessed at -0.01 (ND) while the target boundary condition was a
final temperature in the stack of .85 dimensionless temperature units (-20 C).
After completion of the calculation, the required enthalpy flow to achieve this
temperature span was -0.038 (ND). See Appendix B for normalized variables
and parameters.

38

V. DSTAR GRAPHICAL USER INTERFACE

The DSTAR graphical user interface (GUI) works hand-in-hand with

the core thermoacoustic classes to dynamically create a model of a given

scalable design or experimental device. The GUI was constructed using the

Microsoft Foundation Classes and the document/view paradigm. The

resulting interface and application code provide a mechanism for

manipulating the thermoacoustic classes previously described. This includes

basic construction of a thermoacoustic model as well as disk storage and

retrieval. To fully describe the code required to create the user interface is

well beyond the scope of this paper. As such, the details of the GUI will be

presented so that the reader may become familiar with their use rather than

the underlying code.

A. MAIN PROGRAM WINDOW

Figure 5.1 shows the DSTAR main window. At the top of the screen is

the menu bar which houses the program's four menus. The toolbar contains

the icon shortcuts for some of the menu commands as well as the icons to

initiate a computation. The bulk of the window is used by a multi-function

tabbed view. Selecting one of the five tabs changes the tabbed portion of the

screen revealing different aspects of program functionality. Lastly, the status

bar at the bottom of the screen relays information about computational

processes as well as some basic program help.

39

/
Menu Bar Toolbar

f'jHofTubeSmall2f.tae - Design Simulation for Thermoacoustic Research

File Ed* View Help* S
HI

D cä Q f -H £1
 ■;

8 Suesc/Tatger Summary j £, User Delated Variable?

j ^ Global Properhec

Chooce the i nitraf T herrnoacoucte Component- E nd Cap

tf3iqiwube!i
Constant Taper Tube
Radius Taper Tube
Stack
Heat Exchanger

lldd-v

Hot Straight Tube
HotHX
Stack
AmbHX
Horn

Select an NernrtediateThermoacoucfc Engine
Component from the above 1st and then use the Add
button to include it in the current configuration.

Terminal Component

Edit Component Name j

Choose the T erminal Thermoacoustic Component R adiation I mpedance

Read?'

^Status
Bar

Multi-
Function
Tabbed

View

NUMl H

Figure 5.1. The figure shows the details of the DSTAR main program
window. In this screen shot, the Assemble Components tab is selected.

40

1. Menu Commands

The File menu, as shown in Figure 5.2, contains all the program

functions related to saving and retrieving DSTAR model files. Saving a

DSTAR file results in the entire model geometry, including the current values

of all the variables, being permanently stored to disk. Likewise, retrieving a

file will result in dearchival, allowing resumption of previous work. The

DTSAR files, extension .tae, are an encoded binary format and are not

readable by other programs or text editors.

Edit View Help

New Ctrt+N

Open... QrW3
Save Ctrt+S
Save As...

I Export Solution Data to File

I SJmpleWLmpEUae
2 HoflefTubeHorSmällldtae
3 HotlerTubeHotötae
4 test tae

Options..

Etft

► Basic disk storage and retrieval functions

Export calculation data to disk as a text file

► Most recently used .tae files

Open the numerical methods options dialog box

Quit the DSTAR program

Figure 5.2. The File Menu and its functions.

The File menu also contains two other important features. The first is

the Export Solution Data to File function. Once a calculation has been

completed, the user can export all the data points that were collected during

the integration to a text file on disk. Importing this file into a spreadsheet

program will enable further manipulation of the data or creation of custom

charts if desired. The last menu item, Options..., displays the numerical

integration options dialog box. This window, displayed in Figure 5.3,

41

contains all the user selectable numerical tolerances for integration and

boundary value problem computation.

Options

8 VP Options

Max4lofMMEWTTrie,;

I MNEWT tolf:

MNEWT tobr

Finite Difference
Derivative Stepcise.

\ Rurtge-Kutta Options

Mas Number or
integiätion Steps pa
Module.

OK

1e-006
Cancel

1e-006

1e-006

2000

Absolute Em» Toletance: 1e-010

RefaSve Error Tolerance: 1 e-010

Max 8 or Failed 5teps: |6

Figure 5.3. The numerical options dialog box.

The View menu allows the user to hide or display the toolbar, status

bar, and output window.

The Edit and Help menus are not implemented in this version of

DSTAE. However, they are included in the interface in anticipation of future

capabilities.

2. The Toolbar

The toolbar contains menu shortcut icons as well as two buttons which

initiate DSTAR calculations. The toolbar is normally located as shown in

42

Figure 5.1, however it may be dragged to other places in the main window as

well as to the desktop. Figure 5.4 shows the toolbar buttons and their

function.

Create New Model

Open Previously Saved Model

Save Current Model

Jj jälSlid"

Help
(Not Implemented in

Vers. 0.9)

Display Output Window

Iterate Boundary Value
Problem Solution

^Compute Initial Value
Problem Solution

3.

Figure 5.4. The DSTAR toolbar and icon functions.

The Multi-Function Tabbed View

The multi-function tabbed view provides the bulk of the user interface

features of DSTAR while using a minimal amount of screen space. DSTAR

can easily be used on a computer with an 800x600 display. There are five

tabs in this view, each holding different interface features. The Assemble

Components tab, which is the default, allows the user to construct the

building block model of a thermoacoustic device being simulated. The Global

Properties tab contains all the required information common to the entire

model. After completion of the basic model and global properties, the user

may select the Component Properties tab to enter the detailed description of

each component. The User Defined Variables tab allows the user to construct

specialized variables as functions of the standard DSTAR variables. Finally,

the Guess/Target Summary tab is a compilation of all the variables in the

model which have been selected as guessed initial conditions or targeted

boundary conditions.

43

a) Assemble Components

The Assemble Components tab provides the GUI components

required to build the black-box model of a thermoacoustic device. This tab is

subdivided into three sections as shown in Figure 5.5. These three sections

allow the selection of the initial, intermediate, and terminal thermoacoustic

components of a DSTAR linear model. In general, integration begins with

the initial component, passes through the intermediate components in the

depicted order, and then ends at the terminal component.

r/ Assemble Components

I n&al Component - -

1 End Cap

iStraiahtTube
Constant Taper Tube
Radius Taper Tube
Stack
Heat Exchanger

Add-~>

Straight Tube
Heat Exchanger

Heat Exchanger
Straight Tube Delete

Move Up

Move Down

Select an IrtermediateTheimoacoustic Engine
Component from the above Est and then uoe the Add
button to include it in the current configuration

Terminal Component !

Edit Component Name:

IS tack

Choose the Termsial Thermoacouctic Component Radiation Impedance

Figure 5.5. The Assemble Components tab allows the core components to be
assembled in the proper order.

44

The Initial Component subsection provides a drop-list that allows

the user to select one of several predefined initial thermoacoustic

components. The Initial State component, unique to this subsection, has no

physical geometry, but is rather an insertion mechanism for a known set of

local state variables. The other six options, as shown in Figure 5.6, are all

thermoacoustic lumped elements that require no integration and are coded

with analytic solutions.

Choose the initial Thetmoacousöc Component:

Straight Tube
Constant Taper Tube
Radius Taper Tube
Stack
Heat Exchanger

Ad

End Cap
Rigid Termination
Small Volume
Capillary
Small Volume and Capillary
Rigid Termination and Capillary

n~i

Figure 5.6. The Initial Component drop-list displays the options for the first
component in the DSTAE model.

The Intermediate Components subsection provides for assembly

of the major components of a device. The left-hand list-box shows an

inventory of the thermoacoustic components that have been coded into

DSTAE. The right-hand list-box details the configuration of the device

currently being modeled. Buttons labeled Add, Delete, Move Up, and Move

Down are used to manipulate the components into the proper configuration.

Once a component has been added to the model, its name should be changed

both to allow easier identification, as well as proper functioning of the user

defined variables mechanism which requires unique names. User defined

variables will be described in more detail later in this chapter.

The Terminal Component subsection works identically to the

Initial Component subsection. As shown in Figure 5.7, the choices for the

45

terminal thermoacoustic component are the same with the exception of the

addition of a Radiation Impedance lumped element and no Initial State option.

- Terminal Component

Chooce the Terminal Thermoacoustic Component None

End Cap
Rigid Termination
Small Volume
Capillary
Small Volume and Capillary
Rigid Termination and Capillary
ladiation ImDedance

Figure 5.7. The Terminal Component drop-list.

b) Global Properties

The Global Properties tab, shown in Figure 5.8, contains a small

spreadsheet-like interface for the input, and modification of the global engine

properties. The three columns at the far right are used to designate a given

variable as a guess, target, or optimized quantity. Note that optimized

quantities are not implemented in DSTAE version 1.0. Quantities that are

colored gray as well as checkboxes that have a gray background are not user

editable. The units column depicts the appropriate dimensions that a given

quantity should be entered in. In general, the global properties should be

entered prior to editing any individual component properties since

dimensional conversions may rely on the frequency, sound speed, and

nominal radius. The two buttons on the bottom of the screen may be used to

export or import the global variables to disk.

46

c) Component Properties

The details of the physical description for each thermoacoustic

component are entered on the Component Properties tab. Again, a

spreadsheet-like interface is used to ease the process of entering all the

relevant data. As with the Global Properties tab, all quantities which are

grayed out are not user editable. In general, these quantities are calculated

by DSTAR and will be filled in by the program after a calculation is

completed. Figure 5.9 shows an example of the parameters for a

thermoacoustic stack.

@ Global Properties

Poperty Value Units

!Hz

;ND

G T O

• DDD
- DDD
-DDD
- DDD
-DDD
vDDD
'IDDD
-DDD
- DDD
- DDD

frequency

I gamma

350.000000

M.667000

1 prandtl j 0.668000 ;ND

Jrbeta I 0.650000 jND

* radiusl ; 5.000000 I cm

' ' sSpeedl 102400.000000 Icrnfe

$ -po^pm j 0.100000 jND

pip171 |15520000.000000 I dyn/cm

Tml | 300.000000 | Kelvin

Kgasl : 15550.000000 \ erg/sec*deg*cm

- Global Variable Fie -

import from file j Export brie | Igtobals.gvf

Figure 5.8. The Global Properties tab contains all the data which pertains to
the thermoacoustic device as a whole.

47

The units column on this page allows numerical entries to be

entered in any one of several dimensional choices. Most variables default to a

non-dimensional unit for entry. If desired, the user may select a different

unit to enter a given value. Units such as mks, cgs, english, and non-

dimensional can be mixed at will. Once an entry has been made, selection of

$ Component Properties

End Cap-I

Short Straight Tube

Stack 0
Long Straight Tube

 Units

Temperature \ 0.000000 1Tm!

Pressure (Re) i 0 000000 so

Pressure (Im) i 0.000000 j so

Volume Velocity (Re) : O.OOOOüO ; •.po&in)^ ATI&AS

Volume Velocity (Im) \ 0 000000 I 'aso/fcrrOai ATl/g-sn

Length ; 0.100000 Äi M (lambda bar)

Stack Radius : 1.000000 y/radiusl

Plate Separation ; 4.000000 ■ deltak!

Plate Thickness ; 0.100000 ■ | plate separations

Enthalpy \ -0.010000 ; ND

Ksi | 36000 .Ö00ÖÖÖ ! erg/gram'degree

Cs;l : 118000000.000; erg^'degree

rhos 10.000000 Igfcm'S

betaKs 0.300000 ND

betaCs 0.900000 HD

Acoustic Imp. (Mag) j 0.000000 j pmsg.smms'8l -All

Acoustic Imp. (phase) [0 000000 | oisgr^efe

Work Row 10.00Q0G0 I ND

G T O!

DD
DD
DD
DD
DD
Di
DD
DLTI
DiJ

JBö|
DD
DD
DDi
JDdl
:DO:
DD
DD
:DD

1
B
i: I
1
1
■
D
Ö
O
D

M
D
D

Figure 5.9. The Component Properties tab contains the bulk of the device
geometry information required by the model. To edit a component's
parameters, select the desired component from the current configuration (1).
To enter a value, click on the appropriate column and enter a number (2). To
change the displayed units, click the down arrow in the units column and
select the desired dimensions (3). Note that all quantities which appear gray
are not user editable and, in general, are calculated by the code.

48

a different unit will result in conversion of the previous value to the new

units. For example, to find the dimensioned length of a given component

previously specified in dimensionless units, simply select the desired units

and a conversion will instantly be performed. As previously stated, these

conversions require that the global properties have already been correctly

specified.

The use of the units column has an additional feature in

DSTAR. If a quantity with dimensions of length is specified in dimensionless

form, that quantity will automatically scale as the frequency, initial sound

speed, or nominal radius changes. Conversely, if a length is specified in

dimensioned units, it will remain fixed at that value regardless of changes in

frequency or sound speed.

Creating a scaled model of a laboratory device is now fairly

simple. First enter all the component parameters as dimensioned quantities.

After the each value has been entered, change its units to the dimensionless

form. Now the frequency of oscillations can be adjusted and the size of the

device changed. Then the steady-state solution is found again. The scaled

dimensioned quantities can then be retrieved from the model by reselecting

the desired units.

d) User Defined Variables

The fourth tab in the DSTAR main window is the User Defined

Variables tab. The local state quantities of temperature, complex pressure,

and complex volume velocity fully describe the thermoacoustic waves that

resonate in a given device. These values are the core quantities that are

integrated to provide a solution to the various wave equations. Other

quantities such as work-flow, heat-flow and acoustic impedance are then

49

calculated from these local state quantities. However, it is often necessary to

define new, device specific quantities in order to gain more informative

output from the model. The coefficient of performance (COP), which is a

device specific figure of refrigeration merit, provides a good example of such a

quantity. To create this kind of output, the User Defined Variables tab uses a

Reverse Polish Notation (RPN) syntax as described in Figure 5.10.

e) Guess/Target Summary

The final tab in the multi-function view is the Guess/Target

Summary tab. As its name suggests, this tab displays the list of all the

variables that have been selected as guesses or targets as described in

Chapters 3 and 4. In order to compute a boundary value problem, the

number of guesses must equal the number of targets and this display

provides a convenient way to check. Figure 5.11 displays this tab.

B. THE OUTPUT WINDOW

In addition to the main program window, DSTAR has a secondary

output window. This window, which is displayed following a successful

calculation, provides the graphical and textual output data from the model.

As shown in Figure 5.12, one half of the output window has a continuous,

end-to-end plot of the local state variables from the last calculation. To zoom

in on a particular portion of the plot, the mouse may be used to drag a zoom

box over the desired region of interest. Right-clicking the mouse in the plot

region and selecting the Maximize option will enlarge the plot for easier

viewing. Additional options such as printing, exporting, and customization

may also be found by right clicking the plot.

50

£f Ucer Defined Variables

U?er Defined Variables RPN Loge:

Straight Tübe Wei fMaal

© New I Delete Stacht Tube Wei (Mag)

Avafebte Component Variables:

End Cap-l:Work
End Cap-l:Acoustic Imp. (Mag)
End Cap-l:Acoustic Imp. (phase)
Straight Tube:Start Position
Straight Tube:Temperature
Straight Tube:Pressure (Re)
Straight Tube:Pressure (Im)
Straight Tube:Volume Velocity (Rel
iStraiqht Tube:Volume velocity llrnl
Straight Tube:Length
Straight Tube:Tube Radius
Straight Tube:N/A
Straight Tube:N/A
Straight Tube:N/A
Straight Tube:Work
Straight Tube:Acoustic Imp. (Mag)

Straight Tube:Volume Velocity (Re)
2
y x
Straight Tube:Volume Velocity (Im)
2
y"x
+
0.5

o + i •

Delete Lme \i \fx ©

Figure 5.10. The User Defined Variables tab is used to create device specific
variables as functions of the DSTAR local state, and geometry variables. To
create a new variable, click the New button (1), and then change the default
name (2). Here, the magnitude of the complex volume velocity has been
created. After selecting a variable name from the model's complete list (3),
the Add Component Variable button is pressed (4) inserting the variable's
name into the RPN Logic list-box. To add a constant, enter the value in the
edit box (5) and press the Add Constant button. Finally, an operator is added
to the logic using the appropriate button (6). The expressions are evaluated
from top to bottom using EPN syntax. Note that the user-defined variables
use a name matching mechanism. As such, all components in the model
should have unique names.

51

Guee^T arger Summary

Property Unib
Stack Length Guess 0.1
Straight Tube Length Guess 1.37
Radiation Impedance-T Volume Velocity (Re) Target 0
Radiation Impedance-T Volume Velocity (Im) Target 0

kl*x
kl-x
(1 /gammajfpo/pml) al ATI
(1 /gammajipo/pml) al ATI

Figure 5.11. The Guess/Target Summary tab.

Below the plot, there is a region for typing notes about the current

model. All text in the Model Notes window will be saved with the .tae file

when it is archived to disk.

The right half of the output window displays a text dump provided by

DSTAE following a calculation. All the model's data including geometry,

local state, as well as the guesses both before and after a calculation, are

included in this list. The textual output may be saved to disk at any time by

using the Save Text button at bottom of the screen. It should be noted that

this listing will contain the history of all calculations performed during the

current DSTAR session. To clear the window of its content, simply press the

52

Clear Text button. Note the text contents of this list are not saved to disk

when the model itself is archived using the File menu.

53

o T —i
3 3-
0) <4

Dl
O
O
C

a
v>
CD

S
3
Q.
O

CO Cl

O 3" to

a <
a

a
Q-

c
v>
CD
CL

a O

CD CD

CD 3

CD

v> Ol
O cr

o
a> c
v>
=t 3"
01 =!
Q- o
(11 D.
d CD
CD

CD

*.
=S
-1

r
cr
(D

:3E
Dimersionless

IS*
ja

5. !.

o
2

IS
■S to

m

HI

<< o_o
c c
3 3
CD CD

<<
£D_SL
o o
o.o

a»
» ii .

. CD

T)T3 -4<
CD CD 2 i
«* v> 3 ;

CD CD 3]

Q.
o

,3i:

II « ^

ft*

*1
CD
C
Ql

II II _ =

CJ1

_i **.

>« ■=
S-5T
ft 3

co QJ

33
T3

n o
3

CD
3
ID

m •O 7*.
3 3 >£ » ÜI
n
Of 2~

__l tJl

n (J1
o £- o
z!

=3
CD i<4

—CO TD «•>
g 3 O to

ii " "2 f» 11 _i 3 CD

Sbl« &

7S? S

* § 5 3

Mtrio,^ II
OlmU

55
o

<!
"D!

Oo:

IS
II
i-I

5>

£_
111

IÜ

Figure 5.12. The DSTAE output window.

54

VI. DSTAR PRACTICAL EXAMPLE: AN ENHANCED
HOFLER TUBE

To provide the reader with a practical example of the DSTAE code, a

previously built thermoacoustic device was modeled and then modified for

increased efficiency. Again, the Hofler Tube provides a straightforward and

convenient example.

As previously shown in Figure 4.1, the Hofler Tube is a thermoacoustic

prime mover that uses the supplied thermal gradient to produce acoustic

power. In this case, the open end of the tube is immersed in liquid nitrogen

for several minutes bringing its temperature to -190° C. When removed from

the fluid, heat from the user's hand will flow from the warm end of the device,

through the stack, to the newly created heat sink at the open end. The result

is the spontaneous generation loud acoustic oscillations. This device has

proved useful as ä teaching aid and lecture demonstration.

Figure 6.1 details the DSTAR input parameters used to model the

basic Hofler Tube. Although the design of the Hofler Tube is simple and

relatively easy to construct, its efficiency suffers. Figure 6.2 shows a plot of

the output acoustic state variables (steady state) within the Hofler Tube as

well as the calculated efficiency retrieved from the DSTAR model. The

efficiency of the Hofler Tube, as defined in Figure 2.1 where W is the radiated

sound power, is quite poor at only 0.16%. (Note: the DSTAR model solved is

very similar to the actual Hofler Tube except that the ambient-to-cold

temperature span is replace with a hot-to-ambient temperature span of

comparable ratio. This avoids the modeling ambiguities of a discontinuous

temperature at the open end of the tube, in addition to modeling a genuine

high temperature heat source, which is of interest for more practical engine

designs.)

55

Global Properties:

frequency = 250 Hz
gamma = 1.4 ND
prandtl = 0.715 ND
rbeta = 0.75 ND
radiusl = 1.905 cm
sSpeedl = 34700 cm/s
po/pm =0.1 ND
pm = 1.03e+006 dyn/cm
Tml = 300 Kelvin
KgasI = 2510 erg/sec*deg*cm

Component Parameters:

End Cap-I:
Length = 0 N/A

Hot End Straight Tube:
Length =0.63 l/kl (lambda bar)
Tube Radius = 1 y/radiusl

Hot Heat Exchanger:
Length =0.02 l/kl (lambda bar)
HX Radius = 1 y/radiusl ■
Plate Separation =4.65 deltakl
Plate Thickness = 0.5 plate separations

Stack:
Length = 0.085 l/kl (lambda bar)
Stack Radius = 1 y/radiusl
Plate Separation = 4 deltakl
Plate Thickness = 0.1 plate separations
Enthalpy Flow = 1.12.3 ND
Ksl = 1.344e+006 erg/gram*degree
Csl = 5.02e+006 erg/g*degree
rhos =8.03 g/cm~3
betaKs =0.42 ND
betaCs =0.5 ND

Cold Heat Exchanger:
Length =0.02 l/kl (lambda bar)
HX Radius = 1 y/radiusl
Plate Separation =4.65 deltakl
Plate Thickness =,0.5 plate separations

Cold End Straight Tube:
Length = 0.8227 l/kl (lambda bar)
Tube Radius = 1 y/radiusl

Radiation Impedance-T:
Length = 0 N/A
Radius = 1.905 cm

Figure 6.1. The components and properties used to model the basic Hofler
Tube using DSTAE.

56

ORIGINAL HOFLER TUBE
Acu-

pressure (Re)

Volume Velocity (Im)

Pressure (Im)
X——i

Temperature

Volume Velocity (Re)
+ —i«
Radius

0.00 0.25 0.50 0.75 1.00
kx Position (radians)

Hot heat exchanger^

1.25 1.50

Tube provides heat reservoir'
created by user's hand

Tube provides heat sink
created by immersion in liquid

N2

Stack • Cold heat exchanger

Efficiency = 0.16%

Figure 6.2. The DSTAR model plot of the steady state oscillations in the
original Hofler Tube. The simple design yields very low efficiency . See
Appendix B for normalized variables and parameters.

57

The original Hofler Tube was not designed with efficiency in mind.

Rather, it was designed to operate with a temperature span that is as small

as possible. This constraint contributes to the tube's inefficiency by limiting

the design options available for the stack and other components. As a result,

the stack position, stack length, and stack plate spacing were never optimized

for efficiency but rather just to achieve onset of the spontaneous oscillations.

An additional source of inefficiency in the Hofler tube is the reflection

of acoustic energy back into the tube at its open end. Since the room into

which the sound is propagating is of relatively low acoustic impedance with

respect to the inside of the tube, much of the wave energy which reaches the

interface is reflected back into the tube. The result is a further decline in the

overall ability to project acoustic power into the outside environment (i.e.

efficiency).

Given our current knowledge of thermoacoustics and the DSTAR code

we can design a more efficient demonstration device. Rather than using

liquid nitrogen to create the temperature span, we will use an ordinary gas

(e.g. butane or propane) heat source. This will free some of the constraints

imposed by the use of the liquid nitrogen and allow a more thorough

optimization of the tube's other components. As such, the modified Hofler

tube's stack position, length, and plate spacing have been altered for better

overall performance. A final optimization done to the Hofler tube is the

addition of a horn element to the tube mouth. This gradual flare in tube

diameter helps to reduce some of the acoustic reflections back into the tube,

thereby transmitting more power to the room. The DSTAR tube component

handles the varying cross section of the horn tube, plus a radiation

component has been added to DSTAR to model the complex radiation

impedance coupling power out of the mouth of the horn.

58

As a result of all the modifications, the efficiency of the Holfer Tube

was increased to 2.25% while maintaining a relatively low temperature ratio

from hot to ambient of 1.75. This improved efficiency is a two order of

magnitude increase in the efficiency of the device. The DSTAE model

parameters for the modified Hofler Tube are shown in Figure 6.3. Figure 6.4

shows the resultant plot of the state variables as well as a depiction of the

new design.

59

Global Properties:

frequency = 900 Hz
gamma = 1.4 ND
prandtl = 0.715 ND
rbeta = 0.75 ND
radiusl = 0.7 cm
sSpeedl = 34400 cm/s
po/pm =0.1 ND
pm = 1.03e+006 dyn/cm
Tml = 296 Kelvin
KgasI = 2510 erg/sec*deg*cm

Component Parameters:

End Cap-I:
Length = 0 N/A

Hot End Straight Tube:
Length =0.25 l/kl (lambda bar)
Tube Radius = 1 y/radiusl

Hot Heat Exchanger:
Length = 0.03 l/kl (lambda bar)
HX Radius = 1 y/radiusl
Plate Separation =5.0 deltakl
Plate Thickness = 0.6 plate separations

Stack:

Horn:
Length =1.83 l/kl (lambda bar)
Initial Radius =1.0 y/radiusl
Final Radius =3.0 y/radiusl
Small Radius Angle = 0 degrees
Large Radius Angle =14.3 degrees

Radiation Impedance-T:
Length = 0 N/A
Radius = 2.1 cm

Length =0.16 l/kl (lambda bar)
Stack Radius = 1 y/radiusl
Plate Separation =3.75 deltakl
Plate Thickness=0.083 plate separations
Enthalpy Flow = 0.454141 ND
Ksl = 1.344e+006 erg/gram*degree
Csl = 5.02e+006 erg/g*degree
rhos =8.03 g/cm~3
betaKs = 0.42 ND
betaCs = 0.5 ND

Ambient Heat Exchanger:
Length = 0.03 l/kl (lambda bar)
HX Radius = 1 y/radiusl
Plate Separation = 5 deltakl
Plate Thickness = 0.6 plate separations

Figure 6.3. The components and properties used to model the modified Hofler
Tube using DSTAE.

60

Modified Heat Driven Hofler Tube

Pressure (Re)

Volume Velocity (Im)

Pressure (Im)

Temperature

Volume Velocity (Re)
+ —■■■
Radius

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
kx Position (radians)

Hot heat exchanger

Heat flfl§

Stack
\ Ambient heat exchanger

Efficiency = 2.25%

Horn

Figure 6.4. The DSTAR model plot of a modified heat driven Hofler Tube.
For this design, the driving temperature gradient is created by addition of
heat to the left end of the device using a suitable source such as a gas flame.
Two separate tapers are used to decrease losses within the device. These
modest changes result in an increase in efficiency of about two orders of
magnitude. See Appendix B for normalized variables and parameters.

61

62

VII. CONCLUSION

This thesis has attempted to develop a new expert system code for the

simulation and design of thermoacoustic devices. The assembled code

provides a unique approach to modeling these devices using the object-

oriented C++ language. It includes a Windows™ compliant graphical user

interface as well as data storage and retrieval capabilities. As a result, the

simulation is very flexible yet easy to use. Considerable effort was given to

preserving the flexibility and breadth of the possible simulations, in addition

to allowing easy modification of the source code for new thermoacoustic

components. To demonstrate the utility of the code, a thermoacoustic prime

mover was modeled and then optimized for better performance. The resulting

model yielded an efficiency increase of nearly two orders of magnitude.

Totaling over 39,000 lines of code on approximately 900 pages, the

DSTAE C++ code is too lengthy to be included in this thesis. The final code is

approximately 1/3 commercial software add-ins (plotting capabilities and grid

component), 1/3 graphical user interface and 1/3 thermoacoustics and

numerics.

The DSTAE model, as it stands now, provides a complete set of

components to design and simulate basic thermoacoustic devices. It is

expected, however, that more components will be added as the program

reaches maturity. Furthermore, DSTAE was designed with optimization

routines in mind. Inclusion of an optimizer in future versions will greatly

enhance the program's already capable performance and would provide an

invaluable tool to aid the experimental physicist.

Those interested in obtaining the latest copy of the program should

contact Professor Tom Hofler at the address listed in the distribution list at

the end of this document.

63

64

APPENDIX A: EXTENDING DSTAR

A. ADDING PROGRAM FUNCTIONALITY

One of the great advantages to the DSTAR object oriented code is the

ease with which it can be extended to add greater functionality. The most

basic upgrade is the addition of new thermoacoustic component models to the

code. Once added, the new components will integrate seamlessly into the

existing code and are immediately available to create simulations. It should

be noted that this appendix is intended for those familiar with the C++

language and not the general reader.

To create a new thermoacoustic component in DSTAR, it is necessary

to write a new class that derives from the abstract base class CTAModule. As

a derived class, the new thermoacoustic component class will inherit the

functionality of the CTAModule class. The inherited methods, although not

present in the new class's code, are always available to be called by the

derived class. Figure A.1 shows the methods that all CTAModule derived

classes will inherit.

In addition to defining methods passed on to derived classes, the

CTAModule class also contains several pure virtual functions. A pure virtual

function is one for which the interface, or function prototype, is defined in the

base class but no implementation of the function is provided. As such, all

derived classes must implement the details of the function. These functions

are denoted in the base class's code by the "=0" appended to the end of the

function prototype. Other functions which have the virtual keyword but are

not pure virtual will have some type of basic implementation in the base class

but are ordinarily overridden in the derived classes. The virtual functions

defined in the CTAModule class are shown in Figure A. 2.

65

The CTAModule class also defines some member variables and data

structures that are required by the user interface. These variables and data

structures are presented in Figure A. 3.

void init() - Initialize Runge-Kuttatableau

void initializeStorageArrays(void) - Create arrays for data storage

void finalizeStorageArrays(void) - Compact data storage arrays

void initDerivedElements () - Allocate dynamic memory for Derived elements

void initstateElements(void) - Allocate dynamic memory for Local State elements

void cleanup (void) - Delete all dynamically allocated memory

void calculateDerivedElements(const MV_Vector<double>& localState)

- Calculate acoustic impedance, work and heat-flow as a function of a given set of local state

variables

void adaptiveRK45Solve(MV_Vector<double>& localState, double positionStep)

- Integrate a component from end to end using the Runge-Kutta adaptive method

void takeAdaptiveStep(MV_Vector<double>& localState, doubles positionStep)

- Calculate one step of a particular integration using adaptive stepsize to produce desired

accuracy

void adaptiveRK45(MV_Vector<double>S localState, doubles positionStep)

- Performs single Runge-Kutta step calculation

std::complex<double> CDiffTanh(std::complex<double> zl)

- Computes complex tanh(z1) for the SPECIAL CASE of Re(z1) = Im(z1)

void CBess(std::complex<double> z, std::complex<double>s JO,

std::complex<double>s Jl)

- Complex Bessel functions

std::complex<double> CJlOr(std::complex<double> z)

- Compute the bessel func. ratio J1 (z)/J0(z) for z = (-x, x) where x is pos. & real,

double work(const MV_Vector<double>S localState)

- Calculate the acoustic work-flow done as a function of a given set of local state variables

Figure A. 1. The methods of the CTAModule class which are inherited by its
daughter classes. Some of the more self-explanitory functions have been
omitted for brevity.

66

Pure Virtual Functions:

virtual MV_Vector<double> derivative(const MV_Vector<double>& localState,
double position) = 0

- Provides derivatives for the Runge-Kutta algorithm. MUST be implemented in all derived

classes. If a class requires no integration, simply include an empty function that returns the

passed-in argument.

virtual void getModuleVariables(void) = 0 - Fills the components member variables with

copies of the user interface values. These variables are then used to do all calculations.

MUST be implemented in all derived classes.

Virtual Functions:

virtual void propagate(MV_Vector<double>& localState) - Generic algorithm to

compute the values of the local state variables from end to end using the Runge-Kutta

integrator while storing data and performing other housekeeping tasks . This function is most

often overridden in derived classes to provide unique functionality,

virtual void Serialize (CArchives ar) - Saves/retrieves components variables to disk.

Should be overridden in derived classes.

virtual void ensureConsistentObject(void) - Called by user interface after a value has

been entered. This is the programmers chance to scrutinize entries and ensure they are

consistent with each other and with the model. Should be overridden in all derived classes

Figure A.2. The virtual functions defined in the CTAModule class.

CTAEngine* theEngine - Holds a pointer to the CTAEngine object at runtime

CObArray m_InputStateElements, m_GeometryElements, m_DerivedElements

- Arrays of CTAEIement objects used by GUI to hold model's variables

CArray<double,double> positData, tempData, presRealData, presImagData,

welRealData, welimagData, radiusData - State vs. Position storage arrays

bool m_storingData — Flag to Store data

bool m_stepsizeFixed - Flag to turn off adaptive stepsize

CString m_name - String name of component

double stepSize - Initial stepsize

std: : complex<double> pres, wel - Can be used for calculations if desired

double kxPos, temp - Can be used for calculations if desired

MV_Vector<double> solnError
MV_1Vector<double> a
MV_ColMat<double> b
MV_Vector<double> cl
MV Vector<double> c2

- Used by Runge-Kutta algorithm

Figure A.3. Data structures and member variables of the CTAModule class.

67

B. AN EXAMPLE THERMOACOUSTIC CLASS

To create a new thermoacoustic class, there are two files that must be

inserted into the DSTAR project file. The header file, entitled

"CClassName.h", contains all the function prototypes as well as the member

variable declarations. The following code is an example of a thermoacoustic

class header file for the class CMyTAComponent.

//
// //
// CMyTAComponent.h: definition of the CMyTAComponent class. //

//

//This preprocessor directive is included to prevent multiple inclusions
//of this header file

#ifndef _MYTACOMPCLS_
»define _MYTACOMPCLS _

//Since this class derives from CTAModule it must have access to it's
//interface

»include "CTAModule.h"

class CMyTAComponent : public CTAModule
£

//To allow proper coordination between the CTAEngine class and this
//class, the CTAEngine is declared a friend

friend class CTAEngine;

//Functions and variables accessible from outside the class
public:

DECLARE_SERIAL(CMyTAComponent)//This is a macro, not a function

CMyTAComponent ();//Serialization requires this class to have an
//empty constructor

CMyTAComponent (int dummyArgument);//Single argument constructor
//used by the user interface

virtual -CMyTAComponent ();//Destructor

virtual void Serialize(CArchives ar);//File I/O

void propagate(MV_Vector<double>& locaistate);//Calc. the solution

68

MV_Vector<double> derivative(const MV_Vector<double>& localState,
double position);//Return derivatives

void getModuleVariables(void);//Get copies of GUI values
void ensureConsistentObject(void),-//Check user inputs

protected:

double m_radius, m_area;//Member variables
double calculateSomething(double radius),-//A utility function
int m_type;//A sample variable used to distinguish variants of the

//class

private:

};

#endif

After the header file is created, an implementation file named

"CClassName.cpp" must be created. This file contains all the code for the

functions declared in the header file. The following is an example

implementation file for the preceding header file.

//
// //
// CMyTAComponent.cpp: definition of the CMyTAComponent class. //
// //
//

»include "CMyTAComponent.h"//Include the header for this class

//Macro to implement serialization
IMPLEMENT_SERIAL(CMyTAComponent, CObj ect, 1);

CMyTAComponent::CMyTAComponent ()
{

//Empty constructor required by MFC serialization mechanism
}

//Single argument constructor used by the user interface to add
//components to the model. The single dummy argument is used to
//distinguish this constructor from, the default empty constructor
//but serves no real purpose in this class. It may be used, however,
//to create variations of the class.
CMyTAComponent::CMyTAComponent (int dummyArgument)
t

init();//Initializes Runge-Kutta tableau

initStateElements();//Adds local state variables and allocates
//memory for them

69

initDerivedElements();//Adds derived element variables and
//allocates memory for them

m_name = "My New Component";//Set the name of the component
m_type = dummyArgument;

m_GeometryElements.Add(new CTAElement("Radius", 1.0, true, false,
true, true, false));//Add component specific geometry variables

//using this syntax to the m_GeometryElements
//array (Index 0 is occupied by the length)
//Details about the CTAElement constructor call
//can be found in the file CTAElement.cpp

((CTAElement*)(m_GeometryElements[1]))->SetAvailableUnits(
Y_LENGTH_UNITS);//Set the appropriate units for the variable

//just created
//Details about units are available in the
//CTAElement.cpp file

}

CMyTAComponent::-CMyTAComponent ()
{

cleanup();//Call the base class function to destroy any allocated
//memory

}

void CMyTAComponent::propagate(MV_Vector<double>& localState)
{

//Put copies of GUI variables into local member variables
//prior to any calculations
getModuleVariables();

//Use any member functions specific to class to perform
//additional calculations or to make alterations
//to the passed in local state prior to integration.
m_area = calculateSomething(m_radius);
localState(TEMP) *= m_area; //Note this is a nonsense calculation

//It is just used to illustrate a point

//Prep storage arrays for data
initializeStorageArrays();
//Reset flag
done = false;
//Guess an initial stepsize
stepSize = 0.00001;

//Integrate the component from end to end using the adaptive RK
adaptiveRK45Solve(localState, stepSize);

//Now that the integration is complete,
//place the last calculated localState into the GUI accessable
//variables. This allows for target value comparison and access
//by the user.
((CTAElement*)(m_InputStateElements[1]))->

70

setValue(
((CTAElement*) (m.

setValue(
((CTAElement*) (m

setValue(
((CTAElement*)(m_

setValue(
((CTAElement*)(m.

setValue(

localState(TEMP));
_InputStateElements[2])) •
localState(PRES_REAL));
_InputStateElements[3])) ■
localState(PRES_IMAG));
.InputStateElements[4])) ■
localState (WEL_REAL)) ;
_InputStateElements[5])) ■
localState(WEL_IMAG)) ;

//Compact storage arrays after all data points have been added
finalizeStorageArrays();

//Calculate work, and acoustic impedance based on last values
//of local state variables
calculateDerivedElements(localState) ;

return;

}

//Function returns" the derivative of each local state variable in
//same position as the passed in variable
MV_Vector<double> CMyTAComponent::derivative(const MV_Vector<double>&

localState, double position)
{

//Make an empty vector to hold the derivatives
MV_Vector<double> deriv(localState.size(), 0.0);

//These are nonsense derivatives but illustrate where the proper
//derivative should be placed in the returned Mv_Vector
deriv(l) = 0;//Temperture derivative
deriv(2) = localState(WEL_REAL);//Pressure (Re) derivative
deriv(3) = localState(WEL_IMAG)///Pressure (Im) derivative
deriv(4) = 0;//Vvel (Re) derivative
deriv(5) = 0;//Wel (im) derivative

return deriv;

//Function stores and retrieves the component data to/from disk
void CMyTAComponent::Serialize(CArchive& ar)
{

m_InputStateElements.Serialize(ar);
m_GeometryElements.Serialize(ar) ;
m_derivedElements.Serialize(ar) ;

if (ar.IsStoring()){
ar « m_name
« m_type;//Add additional member variables to be

//stored in this way
}
else {
ar » m_name // Variables must appear in exact same order
» m_type;//here as above

}

71

}

void CMyTAComponent::getModuleVariables(void)
{

//Put a copy of the user interface value of "Radius" into the
//local member variable copy
m_radius = ((CTAElement*)(m_GeometryElements[l]))->getValue();

}

//This function demonstrates the proper syntax for utility functions
//which are defined in the class
double CMyTAComponent::calculateSomething(double radius)
{

return (PI*radius*radius);
}

void CMyTAComponent::ensureConsistentObject(void)
{

getModuleVariables();
if (m_radius < 0.0){

//Reset the radius to a default value
((CTAElement*)(m_GeometryElements[1]))->setValue(l.0);

//In this example, if the radius is < 0 we throw an exception
//which is caught by the user interface and displayed,
throw((Cstring)"Radius must be greater than zero");

C. ADDING THE NEW CLASS TO THE USER INTERFACE

Now that the class has been defined, it is necessary to modify the user

interface to reflect the presence of the new thermoacoustic component. To do

this, changes must be made to the AssemblePage.h and AssemblePage.cpp

files.

First, the header for the new class must be included in the

AssemblePage.h file. There is a list of #include's at the top. Append the new

one as follows:

#include "CTubes.h"
»include "CStacks.h"
»include "CHeatExchangers.h"
»include "CLumpedElements.h"
#include '"CMyTAComponent. h"

72

Second, the function CAssemblePage::OnSetActive(), in the

AssemblePage.cpp file, must be modified to include the name of the new

component:

pListBox->AddString("Constant Taper Tube");
pListBox->AddString("Radius Taper Tube");
pListBox->AddString("Stack");
pListBox->AddString("Heat Exchanger");
pListBox->AddString("My New Component Name");

Lastly, the function CAssemblePage::OnAdd() must be modified to

include the following line of code:

case 3:
pDoc->m_engine.m_TAModules.InsertAt(componentIndex+l, new

CStacks(O));
break;

case 4:
pDoc->m_engine.m_TAModules.InsertAt(componentlndex+l, new

CHeatExchangers(0));
break;

//The number of the case statement must equal the index of the
//component's name in the list box
case 5:

pDoc->m_engine.m_TAModules.InsertAt(componentIndex+1, new
CMyTAComponent(0));

break;

The project can now be recompiled and the program run. The new

class is now an integral part of the program and will function identically to

all the other thermoacoustic components.

73

74

APPENDIX B: SYMBOLS AND EQUATIONS

LIST OF SYMBOLS

A
a
COP
CP

area
sound speed
coefficient of performance
isobaric heat capacity per unit mass

y
y0

ß
7

H
i
I

total energy flow
the imaginary number
initial or nominal ft.

Im
K
l
ND

imaginary part
thermal conductivity
plate half-thickness
non-dimensional

K

P,P
Q

pressure
heat (subscript h or c indicates heat
accepted or rejected from a hot/cold

n
p
0

Q

reservoir)
heat-flow

0)

Re
T

real part
temperature (subscript h or c
indicates temperature of a hot/cold

1
2
h

W
reservoir)
work

c
m

W work-flow or acoustic power s

position perpendicular to sound propagation
plate half-gap
thermal expansion coefficient
ratio of isobaric to iscochoric specific heats

thermal penetration depth
viscous penetration depth
plate heat capacity ratio
thermal diffusivity
wavelength
dynamic viscosity
kinematic viscosity
perimeter
density
Prandtl number
angular frequency

1st order quantity (subscript)
2nd order quantity (subscript)
hot (subscript)
cold (subscript)
mean (subscript)
solid (subscript - stack material
properties)

THERMOACOUSTIC EQUATIONS FOR IDEAL GASES

NojarializatiojQJlQiis_taiLts
N, P = Po = Pm(P</Pm)
Nu = (1/yXR/pJAra!

NT = T^
Nx = Vkj.

rwl

5.
Nr =
Ny =
Nf =

'KI

y0

NPD= (l/2Y)(pyPin)2 Pm ai

dynamic pressure (pm, & P(/pm are global constants)
volume velocity (AT is the area of the initial tube bore)
mean temperature in terms of initial temperature
x position
inner radius of tube in terms of initial radius
transverse y position in stack channel
stack plate thickness d in terms of plate gap y0

power density
power

Nz = Np/Nu = YPn/CAp a]) acoustic impedance

75

Normalized Variables & Parameters
Note: Bold capital sans serif symbols are normalized (dimensionless)
P = p/Po dynamic pressure variable
U = Uj/Nu volume velocity variable
T = Tm/TmI mean temperature variable
X = kjX x position variable
R = rjrwl inner radius variable or parameter
Y = yJ&Ki stack plate gap parameter
L = l/y0 stack plate thickness parameter
H2 = H2(l+L)(rwI/rst) /Np stack enthalpy parameter (rst is stack radius)
K = (K+LKgJkjTnjj/NpD longitudinal thermal conduction parameter in stack

W2 = Re(PU) acoustic work power; Not normalized is W2 = NPRe(PU)

Ideal Gas Relationships

For an ideal gas, the thermal expansion coefficient ß can be ehminated

with,

Tmß = 1, where Tm is expressed in absolute units.

The sound speed a can be expressed as,
o —1/2 a = YPn/Pm > where a(Tm) = ar T gives the temperature dependence.

The gas specific heat cp is given by the following relation,

Pmcp =
f y A

/ j m

Stack Equations

The following equation is the Rott wave equation modified by Swift for

acoustic propagation in channels formed by parallel plates (the stack) where the

plates may have a temperature gradient.

76

{x i (7-1)/.
l+e.

Pi +
py d (i-fv&A

co dx
V

dx
ß a

2 fK-fv dTmdPl

CO2 (l-cr)(l + £J.) dx dx
:0

fy =

fK =

tanh[(l + /)y0/<?y]

tanh[(l + i)V«U

£. =

0 + OV$c

_jKpmcptmh[(l + i)y0/SK]

jKsPscstanh[(l + i)y0/ös]

a = cpßlK=vl K

ö=JlKlCO

Öv=j2v/o)

While this equation is accurate for liquids as an acoustic medium, we will

restrict ourselves to gaseous media and use ideal gas relationships. Simplifying

the equation with ideal gas relationships and normalized variables, the result is,

l + e.
P+ (l + /v)+l(l + ygrXfv+tanh2770-l)-ri

f*f* ,
2 (1-aXl + fJ

"T-P + 0_/r)r^.o
dXdX dX2

where r\0 = (l+i)(yjbv), and ßr is defined by Rott so as to express the temperature
ßr

dependence of the dynamic viscosity p. as u = ^T .

77

The 2nd order enthalpy (H2) or energy equation developed by Rott and

Swift is,

2copm

ny0cP

dpx
P\ i-/v- dx

dTm dp{ dp{

Tmß(fK-fv)

2co3pm(l-a) dx dx dx

xlm /v +
(fK-fvW+e,fv'fK)

-U(y0K + lKs)-

(l + fjd + a)

dT„

dx
(~ denotes complex conjugate)

The energy flow H2 in a thermally insulated stack is a constant for a steady state

solution. This energy constant must either specified, or guessed and solved in

the model. The last local state variable for which we need an equation, is the

temperature. So the energy equation can be rearranged to express the

temperature derivative in terms the energy constant and acoustical variables,

instead of the above form. If ideal gas identities and normalized state variables

are also used, then resulting equation becomes,

Tim
dJ
dX

dP <
dX l-/v-

f*-fv ^ -H,

(r-i*-*)
dP
dX

Im ! 7 (ft-fvlk + e.fv'f*)
(\ + £jl + a)

+ K

Tube Equations

Note: The derivative of the tube radius function may be discontinuous (i.e.

the slope or angle of the tube bore), the tube radius function may NOT be

discontinuous.

78

The dimensionless equations are two first order complex equations. (P is

normalized acoustic pressure & X = k x.)

P\ = Q(x)/f2 Q' = -fiPi

where Q(x) = f2 (dP/dX), fx = R2
W[1 + (y-l)f], f2 = R2

wd-f), Rw s rw/rwI,

27,(i77j
f = f(ijj=; ■, f = flVa nw). Also T|w S (l+i)(rw/8v) and Va nw = (1+iXryöJ.

The primes denote derivatives with respect to normalized position. The quantity

rw is the radius at the (inner) tube wall & rwI is the initial or nominal tube radius.

Jn(z) are Bessel functions of complex argument. U^x) = (i/y)(7tr2
wI)(p0/pm)(aQ), or

Ux = i Q.

This relates the normalized volume velocity to Q. The Prandtl number is c, 6V is

the viscous penetration depth, and 5K is the thermal penetration depth.

Curved Section Tube Tapers

center line

Now the subscript 's' stands for 'small' at the starting end, & 'H' stands for

'large' at the finishing end, & and 'o' stands for a set of 'fictitious' coordinates

that facilitate the solution.

■ r(x) = r0 + R(l-cos0) so that rs = r0 + R(l-cos0s) & rf = r0 + R(l-cos0f).

Subtracting the last two equations we obtain,

R = (r(-rs)/(cos0s-cos0{) and r0 = rs - R(l-cos0s).

79

As before, the solution we want has the form

f
r(x) = r0+R 1-Jl-

(x-xj2

V R'
, but we don't know the value of x0. Since

X5-x0 = Rsin0s, we can write x-x0 = (x-xs) + Rsin0s. Thus the solution

becomes

/

r(x)=r0+R 2 (x-x)2 2sin# O-xJ
l-JcoszÖ -

V
R2 R

We still need to know where the solution stops in the x coordinate.

x(-xs = R(sin0{- sin9s).

The final normalized versions are:

X{ - Xs = k[R(sin0{ - sin0s), and

R.-i+-£
f

2a (X-XS)
2
 2sinöI(X-XJ)

l-Jcos'0.

v
(k,R)2 k,R

LUMPED ELEMENTS

Rigid Termination

In cases where the acoustic velocity is zero or very small, the thermal

conduction at the interface of rigid stationary solid surface (with a large

KsPscs,) gives an acoustic impedance of,

Z,=
-2 f .. \

A 4ii akSS

If we cast this as a normalized volume velocity, we obtain,

U = -44(l+iXY-l) kA P (S/Ap),

where S is the solid area exposed.

80

SfTlflU VolllTTIft

The impedance of an idealized, acoustically small gas volume is,

ZA = iYPn/wV,

ignoring surface effects, where V is the volume. To include thermal

conduction at the rigid surface we use the "rigid termination" solution. The

answer is that the total volume velocity is the sum of the idealized volume

velocity and the volume velocity at the rigid termination of the wall.

Normalized this becomes,

Usv = -i k, P (V/Ar) - %(l+i)(Y-l) k^ P (S/Ap)

Capillary

Assume that a given acoustic pressure drives one end of a capillary,

and that the dynamic pressure is zero at the opposite end. Also, assume that

the length £ is very short relative to a wavelength. Then the impedance of the

capillary is,

ZA =
7Pn

CO v5 j
1 — 2 JjiiTJo)

where S is the area of the bore of the capillary and rj0 = (l+i)(rc/8v) with r0

being the capillary radius. The normalized volume velocity can be expressed

as,

U =
k,l

1- 2 /,(»70)

where the temperature dependence has been made explicit. The capillary can

be combined with other lumped elements by adding its volume velocity with

that of the other component, as was done previously with the small volume

combined with its surface conduction effects.

81

Radiation Impedance

For a vibrating unflanged rigid piston, the radiation impedance

(mechanical) is given by,

Zm = pma S [^(kr)2 + 0.6 i kr], [Ref. 10: Chap. 9]

where k is the wavenumber, r is the piston radius and <S is the piston area.

The acoustic impedance in an ideal gas is then,

ZA = Zm/S2 = Cypm/aS) [i/4(kr)2+ 0.6 i kr].

Since the sound speed and wavenumber are temperature dependent,

normalization requires that this dependence be made explicit. The

normalized form of the radiation impedance is then,

zA = 1/4(1^/ rm + o.6 i (kr/R) r1.

82

LIST OF REFERENCES

1. Swift, G.W., "Thermoacoustic Engines and Refrigerators," Physics Today,
pp.22-28, July 1995.

2. Swift, G.W., "Thermoacoustic Engines," Journal of the Acoustical Society
of America, v.84, p. 1145-1179, 1988.

3. Wheatley, J.C., Swift, G.W., and Migliori, A., "The Natural Heat Engine,"
Los Alamos Science, number 14, pp. 2-29, Fall 1996.

4. Wheatley, J.C., Hofler, T.J., Swift, G.W., and Migliori, A., "Understanding
some simple phenomena in thermoacoustics with applications to
acoustical heat engines," American Journal of Physics, v. 65, No. 2, pp
147-162, February 1995.

5. Wong, K, "Solving Ordinary Differential Equations with Runge-Kutta
Methods", June 1996,
[httpj#ww^_.gejag.x^

6. Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P.,
Numerical Recipies in C, Cambridge University Press, Massachusetts,
1992.

7. Allen, R.C., Avery, P., and Wallace, J.Y., "Lower/Upper Triangular (LU)
Decomposition", Computational Science Textbook,, Sandia Corporation,
1998, [htip:Z/ais.cs.san(^^

8. Deitel, H.M., and Deitel, P.J., How to Program C++, Prentice Hall, New
Jersey, 1998.

9. Pozo, R., MV++ Matrix/Vector Library, Mathematical and Computational
Sciences Division, National Institute of Standards and Technology,
[httpj^math.nist.govimy++/].

lO.Kinsler, John W., Frey, A.R., Coppens, A.B., and Sanders, J.V.,
Fundamentals of Acoustics, 3d ed., John Wiley and Sons, 1982.

83

 - -■

84

INITIAL DISTRIBUTION LIST

No. of copies

1. Defense Technical Information Center 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

3. Dr. Logan E. Hargrove ONR 331 2
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5560

4. Professor Thomas J. Hofler, Code PH/Hf. 4
Naval Postgraduate School
Monterey, CÄ 93943-5100

5. Dr. Gregory W. Swift 1
Los Alamos National Laboratory
MS K764
Los Alamos, NM 87545

6. Dr. David L. Gardner 1
Los Alamos National Laboratory
MS K764 •
Los Alamos, NM 87545

7. Dr. Robert Wong 1
Naval Postgraduate School
Physics Department
Monterey, CA 93943

8. Dr. Henry E. Bass1
National Center for Physical Acoustics
2001 NCPA
University, MS 38677

85

9. LTEricPurdy 1
Strike Figher Squadron 125
Naval Air Station Lemoore, CA 93246

86

